Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.565
Filter
1.
Braz. j. med. biol. res ; 57: e13235, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1550145

ABSTRACT

Abstract The imbalance between pro-inflammatory M1 and anti-inflammatory M2 macrophages plays a critical role in the pathogenesis of sepsis-induced acute lung injury (ALI). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) may modulate macrophage polarization toward the M2 phenotype by altering mitochondrial activity. This study aimed to investigate the role of the PGC-1α agonist pioglitazone (PGZ) in modulating sepsis-induced ALI. A mouse model of sepsis-induced ALI was established using cecal ligation and puncture (CLP). An in vitro model was created by stimulating MH-S cells with lipopolysaccharide (LPS). qRT-PCR was used to measure mRNA levels of M1 markers iNOS and MHC-II and M2 markers Arg1 and CD206 to evaluate macrophage polarization. Western blotting detected expression of peroxisome proliferator-activated receptor gamma (PPARγ) PGC-1α, and mitochondrial biogenesis proteins NRF1, NRF2, and mtTFA. To assess mitochondrial content and function, reactive oxygen species levels were detected by dihydroethidium staining, and mitochondrial DNA copy number was measured by qRT-PCR. In the CLP-induced ALI mouse model, lung tissues exhibited reduced PGC-1α expression. PGZ treatment rescued PGC-1α expression and alleviated lung injury, as evidenced by decreased lung wet-to-dry weight ratio, pro-inflammatory cytokine secretion (tumor necrosis factor-α, interleukin-1β, interleukin-6), and enhanced M2 macrophage polarization. Mechanistic investigations revealed that PGZ activated the PPARγ/PGC-1α/mitochondrial protection pathway to prevent sepsis-induced ALI by inhibiting M1 macrophage polarization. These results may provide new insights and evidence for developing PGZ as a potential ALI therapy.

2.
China Pharmacy ; (12): 186-191, 2024.
Article in Chinese | WPRIM | ID: wpr-1006176

ABSTRACT

OBJECTIVE To investigate the inhibitory effects of Ginkgo biloba extract (GBE) on renal inflammation in diabetic nephropathy (DN) model mice, and its potential mechanism. METHODS KK/Ay mice were fed with high fat and high sugar to induce DN model. They were divided into model group, positive control group [metformin 200 mg/(kg·d)], GBE low-dose and high-dose groups [100, 200 mg/(kg·d)], with 6 mice in each group. Six C57BL/6J mice were fed with a regular diet as the control group. Administration groups were given relevant liquid intragastrically, control group and model group were given constant volume of normal saline intragastrically, once a day, for 8 consecutive weeks. The body weight, fasting blood glucose, 24-hour food intake, 24-hour urine output, monocyte chemoattractant protein-1 (MCP-1), interleukin-12 (IL-12), IL-10, advanced glycation end products (AGEs), blood urea nitrogen (BUN) and serum creatinine (Scr) of mice were measured, and the ratio of bilateral kidneys to body weight was also calculated. The pathological injury and fibrotic changes of the renal cortex were observed, and the expressions of macrophage polarization marker proteins [type M1: inducible nitric oxide synthase (iNOS); type M2: arginase-1 (Arg-1)] and AGEs-the receptor of advanced glycation end products (RAGE)/Ras homolog gene pharm_chenjing@163.com family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway-related proteins were determined in renal cortex. RESULTS Compared with the model group, the symptoms such as renal cortical hyperplasia, vacuoles, infiltration of inflammatory cells, and renal cortical fibrosis had been improved in GBE low-dose and high-dose groups; body weight, serum level of IL-10, the expression of Arg-1 in the renal cortex were significantly higher than model group (P< 0.01); fasting blood glucose, 24-hour food intake, 24-hour urine output, serum levels of MCP-1, IL-12, BUN, Scr and AGEs, the ratio of bilateral kidneys to body weight, renal injury score, the proportion of renal interstitial fibrosis, the protein expressions of iNOS, RAGE, RhoA and ROCK1 (except for GBE low-dose group) in renal cortex were significantly lower than model group (P<0.01). CONCLUSIONS GBE could improve kidney damage and alleviate inflammatory response in DN model mice, the mechanism of which may be related to inhibiting the AGEs-RAGE/RhoA/ROCK signaling pathway and regulating macrophage polarization.

3.
Organ Transplantation ; (6): 125-130, 2024.
Article in Chinese | WPRIM | ID: wpr-1005242

ABSTRACT

Renal fibrosis is a common pathological change from development to end-stage renal diseases in all progressive chronic kidney diseases. Renal fibrosis after kidney transplantation will severely affect the renal graft function. Macrophages are characterized with high heterogeneity and plasticity. During the process of kidney injury, macrophages are recruited, activated and polarized by local microenvironment, and participate in the process of renal tissue injury, repair and fibrosis through multiple mechanisms. Recent studies have shown that macrophages may transit into myofibroblasts and directly participate in the formation of renal fibrosis. This process is known as macrophage-myofibroblast transition. Nevertheless, the regulatory mechanism remains elusive. In this article, the role of macrophages in renal fibrosis, the characteristics of macrophage-myofibroblast transition and the possible regulatory mechanism were reviewed, aiming to provide reference for relevant research of renal fibrosis.

4.
Organ Transplantation ; (6): 40-45, 2024.
Article in Chinese | WPRIM | ID: wpr-1005232

ABSTRACT

Ischemia-reperfusion injury (IRI) is an extremely complicated pathophysiological process, which may occur during the process of myocardial infarction, stroke, organ transplantation and temporary interruption of blood flow during surgery, etc. As key molecules of immune system, macrophages play a vital role in the pathogenesis of IRI. M1 macrophages are pro-inflammatory cells and participate in the elimination of pathogens. M2 macrophages exert anti-inflammatory effect and participate in tissue repair and remodeling and extracellular matrix remodeling. The balance between macrophage phenotypes is of significance for the outcome and treatment of IRI. This article reviewed the role of macrophages in IRI, including the balance between M1/M2 macrophage phenotype, the mechanism of infiltration and recruitment into different ischemic tissues. In addition, the potential therapeutic strategies of targeting macrophages during IRI were also discussed, aiming to provide reference for alleviating IRI and promoting tissue repair.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 276-286, 2024.
Article in Chinese | WPRIM | ID: wpr-1003432

ABSTRACT

Inflammatory bowel disease (IBD), consisting of ulcerative colitis and Crohn's disease, is a chronic relapsing inflammatory gastrointestinal disease closely associated with immune dysfunction. The pathogenesis of IBD is closely related to genetic susceptibility, immune system dysfunction, environmental change, and intestinal microbial dysbiosis. Modern research has found that macrophage polarization plays an important role in the development of IBD and can affect the level of inflammatory response, intestinal mucosal repair, and intestinal microbial balance, making it a potential target for IBD treatment. Increasing evidence suggests that traditional Chinese medicine and its active components can regulate macrophage polarization through multiple pathways and balance the M1/M2 macrophage ratio, thus inhibiting inflammatory response, promoting intestinal mucosal repair, and slowing down the progression of IBD. This article summarized the biological processes and targets involved in macrophage polarization and discussed its impact on IBD. It also provided a brief overview of the latest research on how traditional Chinese medicine and its active components can improve IBD by regulating macrophage polarization, so as to provide new directions and strategies for the clinical application of traditional Chinese medicine in IBD treatment.

6.
Indian J Pathol Microbiol ; 2023 Sept; 66(3): 478-487
Article | IMSEAR | ID: sea-223511

ABSTRACT

Objective: This article aims to study the effect of phosphate and tension homolog deleted on chromosome ten (PTEN) knockdown on colon cancer progression and macrophage polarization in the cancer environment. Materials and Methods and Results: The expression of PTEN in colon cancer tissues and colon cancer cells was significantly lower than in precancerous tissues or CCD-18Co cells, and the decrease was most evident in SW620 cells. The expressions of phosphate (p)-p38, c-Jun N-terminal kinase (JNK), activator protein 1 (AP-1), B-cell lymphoma-2 (Bcl-2) protein in colon cancer tissues and cells were significantly higher than in precancerous tissues or CCD-18Co cells (P-values < 0.05). Bcl-2-associated X (Bax) and Caspase-3 expressions in colon cancer tissues and cells were significantly lower than in precancerous tissues or CCD-18Co cells (P-values < 0.05). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was applied to measure cell viability. Transwell evaluated the cell migration and invasion ability. Si-PTEN improved the proliferation, migration, and invasion of SW620 cells (P-values < 0.05). The expression levels of arginase-1 (Arg-1), CD163, CD206 in colon cancer tissues were significantly higher than in precancerous tissues (P-values < 0.05). The cell cycle, the number of M1 and M2 double-positive cells were assessed by flow cytometry. Si-PTEN reduced the expression of tumor necrosis factor-alpha (TNF-?), interleukin-1beta (IL-1?), and inducible nitric oxide synthase (iNOS), which upregulated the expression of Arg-1, CD206, CD163, p-p38, JNK, and AP-1 (P-values < 0.05). Conclusion: Si-PTEN promoted colon cancer progression and induced the polarization of M2 tumor-associated macrophages in the colon cancer cell environment.

7.
Article | IMSEAR | ID: sea-223119

ABSTRACT

Background: Psoriasis is associated with significant morbidity and impaired quality of life. Identification of the host genes that influence disease susceptibility and can potentially guide future, targeted therapy is the need of the hour. Aims: The aim of the study was to investigate the associations of macrophage migration inhibitory factor (MIF) gene polymorphisms, that is, a 5–8-CATT tetra nucleotide repeats at -794 (-794*CATT5–8) and a single-nucleotide polymorphism at -173 (-173*G/C) with the risk of chronic plaque psoriasis and to observe the correlation, if any, of disease determinants with genetic functional variants and circulating MIF levels. Methods: Five hundred and seventeen individuals (265 psoriasis patients and 252 controls) were genotyped for MIF gene polymorphisms. Data were analyzed with respect to disease susceptibility, serum MIF levels, disease severity, age at onset, disease duration and presence of comorbidities. Results: The presence of co-morbidities was more frequently noted in patients with late onset disease (P = 0.01). No statistically significant differences were observed either in genotype (P = 0.680) or allele frequency (P = 0.69) with respect to distribution of MIF-173*G/C polymorphism between patients and controls. The frequencies of genotypes -794*CATT 5/7 and 7/7 were significantly lower in patients (P = 0.027* and 0.038*, respectively). CATT*5/MIF-173*C haplotype occurred at a higher frequency in patients (odds ratio 3.03, 95% confidence intervals 1.09–8.47, P = 0.02). The mean serum MIF levels were significantly higher in patients as compared to controls (P < 0.001). The presence of either extended MIF -794*CATT repeats or C allele did not reveal any significant association with serum MIF levels or age at onset. Analysis of effect of various disease determinants revealed no significant association with genetic variants and serum MIF levels. Limitations: The lesional expression of MIF could not be studied. Conclusion: Our results showed that CATT*5/MIF-173*C haplotype is associated with increased susceptibility to psoriasis vulgaris.

8.
Article | IMSEAR | ID: sea-222307

ABSTRACT

An 8-year-old girl with a rash and high-grade fever for 6 days arrived at the emergency room. She had an erythematous macular rash on the face, trunk, arms, and legs. Further interrogation called attention to the presence of close contact with stray dogs. Her town had been recognized as a site of a rickettsiosis outbreak in the past year. Spotted fever rickettsiosis was suspected, and doxycycline treatment was initiated. Macrophage activation syndrome (MAS) secondary to Rickettsia rickettsii infection was diagnosed according to the Hemophagocytic lymphohistiocytosis and EULAR/PRINTO/PRES 2016 criteria. As there are no clear guidelines on the treatment of MAS secondary to R. rickettsii. the course of action taken by the pediatric intensive care unit team was to avoid disseminated intravascular coagulopathy and treat MAS, both life-threatening conditions. Directed therapy with high doses of methylprednisolone and intravenous immunoglobulin therapy was initiated. The patient recovered, regaining her functional state before the illness. Few articles have described the association between MAS and rickettsiosis, an illness with high mortality, which makes it paramount to detect and treat promptly.

9.
Arq. Asma, Alerg. Imunol ; 7(1): 96-102, 20230300. ilus
Article in English, Portuguese | LILACS | ID: biblio-1509636

ABSTRACT

Introduction: Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) is a systemic hyperinflammatory disease that occurs in a small number of children after being infected with SARS-CoV-2. Macrophage activation syndrome, an aggressive condition characterized by the excessive inflammation and activation of well-differentiated macrophages, has been shown to occur in patients infected by SARS-CoV-2. Considering the clinical and pathophysiological similarities between these diseases, our main objective was to determine whether gene polymorphisms associated with macrophage activation syndrome were also present in patients with PIMS-TS. Methods: DNA from 10 pediatric patients with PIMS-TS (case group) and ten COVID-19 patients without PIMS-TS (control group) were genotyped by Real-time PCR analysis (TaqMan®) for single nucleotide polymorphisms (SNP) in four genes associated with macrophage activation syndrome: perforin 1 (PRF1), granzyme B (GZMB), syntaxin 11 (STX11), and syntaxin binding protein 2 (STXBP2). The SNP analysis was performed using the additive, dominant, and recessive models. Results: A significantly higher frequency of an SNP (C wild allele in rs6573910) in the GZMB gene was observed in both the additive and dominant models in the PIMS-TS group than controls. A borderline significant difference was also observed for the G allele in rs7764017 of the STX11 gene in the PIMS-TS group in the additive model. Conclusions: This study indicated the presence of two polymorphisms in genes associated with macrophage activation syndrome (GZMB and STX11) in patients who developed PIMS-TS. If the presence of these SNPs is validated in a larger number of PIMS-TS cases, they can be used as potential biomarkers for early identification of pediatric patients with a higher probability of developing PIMS-TS associated with SARS-CoV-2 infection.


Introdução: A síndrome multissistêmica inflamatória pediátrica temporariamente associada ao SARS-CoV-2 (SIMP-TS) é uma doença hiperinflamatória sistêmica que ocorre em um pequeno número de crianças após serem infectadas pelo SARS-CoV-2. A síndrome de ativação de macrófagos (SAM), uma condição agressiva caracterizada pela inflamação excessiva e ativação de macrófagos bem diferenciados, demonstrou ocorrer em pacientes infectados por SARS-CoV-2. Considerando as semelhanças clínicas e fisiopatológicas entre essas doenças, neste estudo o nosso principal objetivo foi determinar se polimorfismos gênicos associados à SAM também estavam presentes em pacientes com SIMP-TS. Métodos: DNA de dez pacientes pediátricos com SIMP (grupo caso) e dez pacientes COVID-19 sem SIMP (grupo controle) foram genotipados por análise de PCR em tempo real (tecnologia TaqMan®) para polimorfismos de nucleotídeo único (SNPs) em quatro genes selecionados associados com SAM: perforina 1 (PRF1), granzima B (GZMB), sintaxina 11 (STX11) e proteína de ligação de sintaxina 2 (STXBP2). A análise dos SNPs foi realizada utilizando o modelo aditivo, dominante e recessivo. Resultados: Uma frequência significativamente maior de um SNP (alelo selvagem C em rs6573910) no gene GZMB foi observada pelos modelos aditivo e dominante no grupo SIMP quando comparado aos controles. Além disso, uma significância limítrofe foi observada para o alelo G em rs7764017 do gene STX11 no grupo SIMP pelo modelo aditivo. Conclusões: Nosso estudo indicou a presença de dois polimorfismos em genes associados à SAM (GZMB e STX11) em pacientes que desenvolveram SIMP-TS. Uma vez validada a presença desses SNPs em um número maior de casos de SIMP-TS, eles podem ser usados como potenciais biomarcadores para a identificação precoce de pacientes pediátricos com maior probabilidade de desenvolver SIMP-TS associado à infecção por SARS-CoV-2.


Subject(s)
Humans , Child, Preschool , Child
10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 86-96, 2023.
Article in Chinese | WPRIM | ID: wpr-953927

ABSTRACT

ObjectiveTo explore the clinical efficacy of compound Wufengcao liquid (CWL) on tuberculous ulcer and the influence on macrophage polarization. Method① Clinical experiment: A total of 145 patients with tuberculous ulcer who were treated in Nanjing Integrated Traditional Chinese and Western Medicine Hospital were randomized into observation group, control group Ⅰ, and control group Ⅱ according to the random number table method. In addition to the basic anti-tuberculosis chemotherapy, CWL, Kangfuxin liquid, and isoniazid solution (local external application) were respectively used in the observation group, control group Ⅰ, and control group Ⅱ. The treatment lasted 4 weeks for each group. The total effective rate in wound healing, traditional Chinese medicine(TCM) syndrome score, and histopathological morphology of wound were observed and the expression of inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) in wound tissue was measured. ② Cell experiment: RAW264.7 cells were cultured in DMEM (10% fetal bovine serum, 1% double-antibody solution) in a cell incubator (37 °C, 5% CO2). Phorbol 12-myristate 13-acetate (PMA) was used to induce the differentiation of RAW264.7 cells into macrophages. Lipopolysaccharide (LPS) was employed to stimulate polarization of macrophages into M1 type and interleukin-4 (IL-4) to induce the polarization into M2 type. Kangfuxin solution, isoniazid solution, and CWL were respectively applied to the above cell model for 36 h. The cell supernatant was collected and centrifuged. Western blot was used to detect the protein expression of tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), iNOS, and Arg-1, and flow cytometry (FCM) to detect the expression of CD86 and CD206. Result①Clinical experiment: The total effective rate in the CWL group [98.0% (48/49)] was higher than that in the control group Ⅰ [87.5% (42/48), χ2=3.962, P<0.05] and control group Ⅱ [83.3% (40/48), χ2=6.162, P<0.05]. After 28 days of treatment, compared with control group Ⅰ and control group Ⅱ, CWL decreased the TCM syndrome score (P<0.05) and obviously improved the histopathological morphology of the wound. Immunohistochemistry results showed that the iNOS expression in local focus tissue was lower (P<0.05) and the expression of Arg-1 was higher (P<0.05, P<0.01) in the CWL group than in the control group Ⅰ and control group Ⅱ after 28 days of treatment. ② Cell experiment: Western blot assay showed that the expression of iNOS and TNF-α in LPS group increased compared with that in the M0 group (P<0.01) and the expression in the LPS+ isoniazid group, LPS+ Kangfuxin group, and LPS+CWL group was lower than that in the LPS group (P<0.05). The expression of iNOS in LPS+Kangfuxin group and LPS+ CWL group was lower than that in the LPS+isoniazid group (P<0.05, P<0.01), and the expression of TNF-α in LPS+ CWL group was lower than that in LPS+isoniazid group (P<0.01). The expression of TNF-α in LPS+ CWL group decreased compared with that in the LPS+ Kangfuxin group (P<0.05). The expression of Arg-1 and TGF-β in IL-4 group was higher than that in the M0 group (P<0.01), and the expression in the IL-4+isoniazid group, IL-4+Kangfuxin group, and IL-4+ CWL group was higher than that in the IL-4 group (P<0.05). The expression of Arg-1 and TGF-β in the IL-4+ Kangfuxin group and IL-4+CWL group was higher than that in the IL-4+isoniazid group (P<0.05, P<0.01), and the expression was higher in the IL-4+CWL group than in the IL-4+Kangfuxin group (P<0.05, P<0.01). The FCM result showed that the expression of CD86 and CD206 in LPS group and IL-4 group was higher than that in M0 group (P<0.01). CD86 expression in LPS+isoniazid group, LPS+ Kangfuxin group, and LPS+CWL group was lower than that in the LPS group (P<0.01). The expression of CD86 in LPS+Kangfuxin group and LPS+ CWL group increased compared with that in the LPS+isoniazid group (P<0.01), and the expression was higher in the LPS+ CWL group than in the LPS+Kangfuxin group (P<0.01). CD206 expression in IL-4+ isoniazid group, IL-4+Kangfuxin liquor group, and IL-4+ CWL group was increased compared with that in the IL-4 group (P<0.01). CD206 expression in IL-4+Kangfuxin liquid group and IL-4+ CWL group was decreased compared with that in the IL-4+isoniazid group (P<0.01). CD206 expression in IL-4+CWL group was lower than that in the IL-4+ Kangfuxin group (P<0.05). ConclusionCWL can promote the healing of tuberculous ulcers, and the mechanism is that it inhibits the expression of iNOS, TNF-α, and CD86 and promotes the expression of Arg-1, TGF-β, and CD206, thereby regulating M1/M2 polarization balance.

11.
Chinese Journal of Applied Clinical Pediatrics ; (24): 615-618, 2023.
Article in Chinese | WPRIM | ID: wpr-990091

ABSTRACT

Systemic juvenile idiopathic arthritis(sJIA) is one of the most serious critical illnesses in childhood, characterized by high fever, recurrent rash, and arthritis, etc.Children with sJIA associated-lung disease(sJIA-LD) are more severely ill and have a worse prognosis, the correlation between the mechanism and age, disease activity, anti-rheumatic drug therapy, applications of biologics, infection and other factors is worth exploring.This article reviews the research progress on the mechanism, risk factors, treatment methods and prognosis of sJIA-LD, so as to provide a theoretical basis for improving the diagnosis and treatment of sJIA and improving the prognosis.

12.
Journal of International Oncology ; (12): 71-75, 2023.
Article in Chinese | WPRIM | ID: wpr-989523

ABSTRACT

Objective:To study the value of cell paraffin block immunohistochemistry and pleural fluid Crk like protein (CRKL) and macrophage inhibitory cytokine-1 (MIC-1) in the diagnosis of malignant pleural effusion.Methods:A total of 98 patients with pleural effusion treated in Shantou Central Hospital from February 2020 to February 2021 were retrospectively selected as the research objects, including 58 benign cases and 40 malignant cases. The levels of CRKL and MIC-1 in pleural effusion were detected by enzyme-linked immunosorbent assay. The pleural effusion was analyzed by cell paraffin block immunohistochemistry. The levels of various indexes in benign group and malignant group were compared. The diagnostic value of cell paraffin block immunohistochemistry and pleural effusion CRKL and MIC-1 for benign and malignant pleural effusion was analyzed by receiver operating characteristic (ROC) curve.Results:With pathological results as the gold standard, 54 cases of benign and 44 cases of malignant were diagnosed by cell paraffin block immunohistochemistry. The diagnostic accuracy was 75.5% (74/98) , and the sensitivity and specificity were 75.0% (30/40) and 75.9% (44/58) respectively. The levels of pleural effusion CRKL [2.84 (2.17, 3.98) ng/ml vs. 1.88 (0.94, 2.62) ng/ml], MIC-1 [2.28 (1.67, 2.98) ng/ml vs. 1.76 (1.22, 2.32) ] ng/ml] in the malignant group were higher than those in the benign group, with statistically significant differences ( Z=-4.57, P<0.001; Z=-3.09, P<0.001) . The optimal critical value of CRKL in pleural effusion for the diagnosis of malignant pleural effusion was 2.33 ng/ml, the area under the curve (AUC) was 0.76 (95% CI: 0.66-0.85) , and the sensitivity and specificity were 67.5% (27 /40) , 74.1% (43/58) . The optimal critical value of MIC-1 in pleural effusion for the diagnosis of malignant pleural effusion was 2.10 ng/ml, the AUC was 0.74 (95% CI: 0.64-0.85) , and the sensitivity and specificity were 60.0% (24/40) , 82.8% (48/58) . The AUC of MIC-1 and CRKL in pleural effusion combined with cell paraffin block immunohistochemistry for the diagnosis of malignant pleural effusion was 0.83 (95% CI: 0.75-0.91) , and the sensitivity and specificity were 85.0% (34/40) and 70.7% (41/58) . The sensitivity and AUC of combined diagnosis were significantly higher than those of CRKL and MIC-1 alone (sensitivity: χ2=4.26, P=0.046; χ2=6.27, P=0.012; AUC: Z=3.53, P<0.001; Z=4.14, P<0.001) . Conclusion:CRKL and MIC-1 in pleural effusion of patients with malignant pleural effusion are highly expressed, which can be used as indicators for the diagnosis of malignant pleural effusion. Detection combined with cell paraffin block immunohistochemistry can improve the diagnostic value of malignant pleural effusion.

13.
International Journal of Pediatrics ; (6): 129-134, 2023.
Article in Chinese | WPRIM | ID: wpr-989052

ABSTRACT

Macrophage activation syndrome is a life-threatening syndrome of multiple causes secondary to rheumatic immune diseases.It is characterized by the continuous activation and proliferation of T lymphocytes and macrophages that leads to overwhelming immune response and excessive release of pro-inflammatory mediators, which eventually causes cytokine storm and multiple organ failure.The main clinical manifestations and laboratory abnormalities include fever, hemocytopenia, hepatomegaly, splenomegaly, lymph node enlargement, coagulation disorders, liver function damage, hyperferritinemia, hypertriglyceridemia and the phenomenon of phagocytosis of blood cells in bone marrow.This article reviews the progress of epidemiology, pathogenesis and biomarkers in macrophage activation syndrome to provide new insights for early diagnosis and identification of the complication which has a rapid progress and high fatality rate.

14.
Journal of Leukemia & Lymphoma ; (12): 284-288, 2023.
Article in Chinese | WPRIM | ID: wpr-988984

ABSTRACT

Objective:To explore the efficacy of subcutaneous injection of granulocyte-macrophage colony-stimulating factor (GM-CSF) in preventing invasive fungal disease (IFD) in patients with multiple myeloma (MM).Methods:The clinical data of 222 patients who were admitted to the Second Hospital of Harbin Medical University from January 2015 to June 2021 were retrospectively analyzed. The patients was given GM-CSF (3-5 μg·kg -1·d -1, GM-CSF group) or granulocyte colony-stimulating factor (G-CSF, 2-5 μg·kg -1·d -1, G-CSF group) when neutrophils (ANC) ≤1.5×10 9/L after induction chemotherapy. Patients were discontinued when white blood cell count (WBC) ≥10.0×10 9/L. The incidence of IFD (including confirmed, clinical and proposed diagnosis) and breakthrough invasive fungal infections was compared between the two groups. Results:The incidence of IFD was 8.1% (18/222) in all patients. The incidence of IFD was 3.5% (3/85) and 10.9% (15/137) in the GM-CSF and G-CSF groups, respectively, and the difference between the two groups was statistically significant ( χ2 = 3.88, P = 0.049). In 9 patients of GM-CSF group receiving fungal infection prophylaxis and in 15 patients of G-CSF group receiving fungal infection prophylaxis, the incidence of breakthrough invasive fungal infections was 0 and 7 cases, respectively, and the difference between the two groups was statistically significant ( P = 0.022). Conclusions:GM-CSF application in MM patients can reduce the incidence of IFD and breakthrough invasive fungal infections.

15.
Journal of Leukemia & Lymphoma ; (12): 264-269, 2023.
Article in Chinese | WPRIM | ID: wpr-988980

ABSTRACT

Macrophages have plastic and diverse phenotypes and functions, and they play different roles in host defense, tissue homeostasis and repair, development, and various pathologic processes. Although the classically activated macrophage (M1) and alternatively activated macrophage (M2) phenotypes are widely accepted, most macrophages under physiologic and pathologic conditions are polarized to a continuum of states between the M1 and M2 extreme phenotype poles. In recent years, research on the regulatory mechanisms of M1 and M2 macrophages has made great progress, preliminarily elucidating the role of cellular metabolic reprogramming in macrophage polarization and the role of glycolytic enzymes in controlling inflammatory macrophages. The knowledge lays the foundation for elucidating the mechanisms in the regulation of macrophage functional phenotypes. Tumor-associated macrophages play important roles in the development of tumors. The macrophages in the microenvironment of hematologic malignancies have unique features, and a deep study on them will provide new thoughts and clues for clinical diagnosis and therapeutics.

16.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 784-791, 2023.
Article in Chinese | WPRIM | ID: wpr-988724

ABSTRACT

ObjectiveThis study aimed to investigate the effects of eugenol on inhibiting the inflammatory activation of human umbilical cord mesenchymal stem cells (HUC-MSCs) and the pro-inflammatory phenotype of hepatic stellate cells (HSCs) in liver fibrosis, and to explore their underlying mechanisms. MethodsHUC-MSCs were cultured and identified in vitro, and the toxicity of eugenol to HUC-MSCs was evaluated by MTT method. The effect of eugenol on the migration ability of HUC-MSCs was investigated by in vitro scratch test. The expression of α-SMA, COL1A1, Smad2/3 and p-Smad2/3 of LX-2 cells activated by TGF-β1 treated with EU-MSCs-CM and MSCs-CM were detected by WB assay. EU-MSCs-CM and MSCs-CM treated THP-1 macrophages stimulated with Lipopolysaccharide (LPS) were analyzed for the expression of surface markers CD11b, CD86, and CD206 by flow cytometry. Additionally, the expression of pro-inflammatory genes TNF-α, IL-1β, and IL-6 in THP-1 macrophages was detected by qPCR. ResultsThe results of MTT method showed that the viability of the cells remained above 90% after 24 h and 48 h treatment at 0, 7.5, 15 μg/mL. In vitro scratches showed that eugenol treatment enhanced HUC-MSCs migration. WB results showed that compared with MSCs-CM treatment, EU-MSCs-CM treatment significantly inhibited the expression of α-SMA, COL1A1, Smad2/3, and p-Smad2/3 of activated HSCs. Flow cytometry showed that compared with MSCs-CM treatment, EU-MSCs-CM treatment had a more significant inhibitory effect on CD86, a M1-type polarization marker in THP-1 macrophages. The results of qPCR experiment showed that compared with MSCs-CM treatment, EU-MSCs-CM treatment more significantly inhibited the expressions of TNF-α, IL-1β and IL-6 of THP-1 macrophage proinflammatory genes. ConclusionsEugenol enhances the inhibitory effect of HUC-MSCs on inflammatory activation of HSCs, possibly by regulating TGF-β1/Smads signaling pathway. It also enhances the inhibitory effect of HUC-MSCs on the pro-inflammatory phenotype of macrophages. Proinflammatory macrophages can promote inflammatory activation of HSCs.

17.
Journal of Medical Biomechanics ; (6): E408-E414, 2023.
Article in Chinese | WPRIM | ID: wpr-987966

ABSTRACT

Mechanical stimulation in micro-environment ( such as matrix stiffness, surface topography, cyclical stretch) can be perceived by macrophages through receptors on cell membrane, transmitted to the nucleus along the adhesion protein molecular chain and cytoskeleton, and also converted into biochemical signal to stimulate gene transcription. Mechanical stimulation drives various biological functions in macrophages, such as adhesion, proliferation, migration, and polarization, thereby playing a corresponding role in disease progression and tissue regeneration. This study demonstrates the role of micro-environment mechanics in macrophages polarization and function, and elucidates the related mechanism of mechanotransduction pathway in macrophages, so as to provide molecular biomechanics insights into the development of macrophage-targeting immunomodulatorybiomaterials.

18.
Organ Transplantation ; (6): 723-729, 2023.
Article in Chinese | WPRIM | ID: wpr-987124

ABSTRACT

Ischemia-reperfusion injury, rejection, nephrotoxicity caused by calcineurin inhibitors and other factors cause excessive accumulation of renal extracellular matrix after kidney transplantation, which gradually induce renal fibrosis and eventually lead to renal failure. In recent years, the mechanism of macrophages in renal allograft fibrosis has gradually captivated widespread attention. Studies have shown that some drugs like mammalian target of rapamycin inhibitors may mitigate renal allograft fibrosis through the macrophage. In this article, the main pathogenesis and pathophysiological mechanism of renal allograft fibrosis, the role of different macrophages in the progression of renal allograft fibrosis, the infiltration of peripherally-recruited macrophages and renal resident macrophages into renal injury areas, the induction of myofibroblasts by macrophages and potential treatment regimens of macrophage-associated renal allograft fibrosis were reviewed, aiming to provide reference for investigating the role of macrophages in renal allograft fibrosis.

19.
Organ Transplantation ; (6): 643-648, 2023.
Article in Chinese | WPRIM | ID: wpr-987113

ABSTRACT

Kidney transplantation is the optimal treatment for patients with end-stage renal disease, whereas long-term survival of renal allografts remains a challenging issue. Renal ischemia-reperfusion injury (IRI) and rejection of renal allografts are considered as important influencing factors of long-term survival of renal allografts, which are regulated by innate and adaptive immune cells. Macrophages are one type of innate immune cells that could assist initiating adaptive immunity and are divided into M1, M2 and regulatory macrophages. Previous studies have revealed that M1 macrophages may aggravate renal IRI and acute T cell-mediated rejection (TCMR). However, M2 macrophages may mitigate renal IRI and acute TCMR, whereas it is positively correlated with antibody-mediated rejection (AMR). Regulatory macrophages are a special subgroup of macrophages, which may induce immune tolerance in organ transplantation and have promising clinical application prospects and basic scientific research value. In this article, the relationship among macrophage typing, macrophages and renal IRI, rejection of renal allografts, regulatory macrophages and immune tolerance was reviewed, and the potential mechanism was analyzed, aiming to induce changes in macrophage subtypes or eliminate specific subtypes of macrophages, thereby improving clinical prognosis of the recipients and long-term survival of renal allografts.

20.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 819-824, 2023.
Article in Chinese | WPRIM | ID: wpr-987091

ABSTRACT

@#Adiponectin, an adipocytokine secreted by adipocytes, has emerged as a potential treatment agent for type 2 diabetes. Adiponectin plays a variety of physiological roles in regulating glucolipid metabolism, oxidative stress, inflammatory responses and bone metabolism by binding to its receptors expressed on a variety of cells and tissues. Numerous studies have confirmed the strong association of adiponectin with type 2 diabetes-related periodontitis. Adiponectin can improve systemic insulin resistance by increasing insulin sensitivity and promoting insulin secretion. It improves the periodontal inflammatory response by inhibiting the expression of proinflammatory cytokines induced by Porphyromonas gingivalis lipopolysaccharide and promoting M2-type polarization of macrophages. In addition, adiponectin inhibits osteoclast differentiation and maturation through various pathways, such as Wnt/β-catenin and NF-κ, and promotes osteoblast differentiation to regulate bone metabolism, thus improving periodontal bone resorption and destruction. Therefore, adiponectin is expected to become a therapeutic target for type 2 diabetes-related periodontitis. Due to the physiological characteristics of adiponectin, its clinical application has been somewhat limited. This article reviews the latest research progress on adiponectin in type 2 diabetes-related periodontitis, aiming to elucidate the possible effects of adiponectin on type 2 diabetes-related periodontitis in terms of glycemic control, anti-inflammation and bone metabolism and to provide some opinions on the treatment of this disease and the development of relevant drugs.

SELECTION OF CITATIONS
SEARCH DETAIL